On highly regular strongly regular graphs

Christian Pech

TU Dresden

MTAGT’14, Villanova in June 2014
k-Homogeneity

The local-global principle

Every isomorphism between two substructures of a structure can be extended to an automorphism of the structure.

The formal definition for graphs

Let $\Gamma = (V, E)$ be a graph. Gamma is called k-homogeneous if for all $V_1, V_2 \subseteq V$ with $|V_1| = |V_2| \leq k$ and for each isomorphism $\psi : \Gamma(V_1) \rightarrow \Gamma(V_2)$ there exists an automorphism φ of Γ such that $\varphi|_{V_1} = \psi$.
Types

Category of Graphs

- A graph-homomorphism \(h : \Gamma_1 \rightarrow \Gamma_2 \) is a function from \(V(\Gamma_1) \) to \(V(\Gamma_2) \) that maps edges to edges.
- an embedding is an injective homomorphism with the property that the preimage of edges are edges, too.

Regularity-Types

- A regularity-type (or type, for short) is an embedding of finite graphs.
- Regularity-types are denoted like \(\mathcal{T} : \Gamma_1 \hookrightarrow \Gamma_2 \).

Order of a Type

\(\mathcal{T} : \Gamma_1 \hookrightarrow \Gamma_2 \) has order \((n, m)\) if \(|V(\Gamma_1)| = n \), and \(|V(\Gamma_2)| = m \)
T-regularity

Given:
- A graph Γ,
- a type $T : \Delta_1 \rightsquigarrow \Delta_2$

Counting T:
- Let $\iota : \Delta_1 \mapsfrom \Gamma$.
- $\#(\Gamma, T, \iota)$ we define to be the number of embeddings $\hat{\iota} : \Delta_2 \mapsfrom \Gamma$ that make the following diagram commute:
\(\mathbb{T} \)-regularity (cont.)

\(\mathbb{T} \)-regularity

\(\Gamma \) is called \(\mathbb{T} \)-regular if the number \(\#(\Gamma, \mathbb{T}, \iota) \) does not depend on the embedding

\[\iota : \Delta_1 \hookrightarrow \Gamma. \]

In this case this number is denoted by \(\#(\Gamma, \mathbb{T}) \)

Remark

A concept equivalent to \(\mathbb{T} \)-regularity, but in the category of complete colored graphs, was introduced and studied by Evdokimov and Ponomarenko (2000) in relation with the \(t \)-vertex condition for association schemes.

Example

If \(\mathbb{T} \) is given by

\[\begin{array}{c}
\circ \\
\times
\end{array} \begin{array}{c}
\rightarrow
\end{array} \begin{array}{c}
\circ \\
\times
\end{array} \]

then \(\Gamma \) is \(\mathbb{T} \)-regular if and only if it is regular.
\((n, m)\)-regularity

Definition

A graph \(\Gamma \) is \((n, m)\)-regular if for all \(1 \leq k \leq n \) and \(k < l \leq m \), and for every type \(\mathbb{T} \) of order \((k, l)\) we have that \(\Gamma \) is \(\mathbb{T} \)-regular.

- \((1, 2)\)-regular is the same as regular,
- \((2, 3)\)-regular is the same as strongly regular,
- \((k, k + 1)\)-regular is the same as \(k\)-isoregular,
- \((2, t)\)-regular is the same as fulfilling the \(t\)-vertex condition.
Known examples

Hestenes, Higman (1971): Point graphs of generalized quadrangles fulfill the 4-vc,

A.V.Ivanov (1989): found a graph on 256 vertices with the 4-vc (not 2-homogeneous),

Brouwer, Ivanov, Klin (1989): generalization to an infinite series,

A.V.Ivanov (1994): another infinite series of graphs with the 4-vc,

Reichard (2000): both series fulfill the 5-vc,

A.A.Ivanov, Faradžev, Klin (1984) constructed a srg on 280 vertices with Aut(J_2) as automorphism group,

Reichard (2000): this graph fulfills the 4-vc,

Reichard (2003): point graphs of GQ(s, t) fulfill the 5-vc,

Reichard (2003): point graphs of GQ(q, q^2) fulfill the 6-vc,

Klin, Meszka, Reichard, Rosa (2003): the smallest srgs with 4-vc have parameters $(36, 14, 4, 6),$

CP (2004): point graphs of partial quadrangles fulfill the 5-vc,

Reichard (2005): point graphs of GQ(q, q^2) fulfill the 7-vc,

CP (2007): point graphs of PQ($q - 1$, q^2, $q^2 - q$) fulfill the 6-vc,

Klin, CP (2007): found two self-complementary graphs that fulfill the 4-vc.
Counting types in graphs is algorithmically hard.
Luckily, in general, it is not necessary to count all types.

Example (Hestenes-Higman-Theorem)
In order to prove that a graph fulfills the 4-vertex condition for a graph, it is enough to prove that it is T-regular for the following types:

- $x - y$
- $x - y - y$
- $x - x - y$
- $x - x - y - y$
- $x - x - x - y$
- $x - x - x - y - y$
Composing types

Given:

\(T_1 : \Delta_1 \leftrightarrow \Delta_2, \ T_2 : \Delta_3 \leftrightarrow \Delta_4, \ e : \Delta_3 \leftrightarrow \Delta_2. \)

Consider the following diagram:

\[
\begin{array}{c}
\Delta_4 \\
\uparrow \quad T_2 \\
\Delta_2 \\
\quad \quad e \\
\quad \quad \downarrow \quad T_1 \\
\Delta_3 \\
\downarrow \quad \downarrow \\
\Delta_1
\end{array}
\]
Composing types

Given:

\[T_1 : \Delta_1 \leftrightarrow \Delta_2, \ T_2 : \Delta_3 \leftrightarrow \Delta_4, \ e : \Delta_3 \leftrightarrow \Delta_2. \]

Consider the following diagram:

Let \(\Lambda \) be a colimes.
Composing types

Given:

\(T_1 : \Delta_1 \leftrightarrow \Delta_2, \ T_2 : \Delta_3 \leftrightarrow \Delta_4, \ e : \Delta_3 \leftrightarrow \Delta_2. \)

Consider the following diagram:

\[\begin{array}{c}
\Lambda & \leftarrow & \Delta_2 \leftarrow & \Delta_3 \rightarrow & \Delta_1 \\
& \leftarrow & ^{\iota_1} & e & \\
& & \rightarrow & \Delta_4 \\
\end{array} \]

Let \(\Lambda \) be a colimes.

Then \(\iota_1 \) is a type. It is denoted by \(T_1 \oplus_e T_2. \)
Comparison of Types

Given:
\[T_1 : \Delta_1 \leftrightarrow \Delta_2, \ T_2 : \Delta_1 \leftrightarrow \Delta_3. \]

Definition
We define \(T_1 \preceq T_2 \) if there is an epimorphism \(\tau : \Delta_2 \twoheadrightarrow \Delta_3 \) that makes the following diagram commute:

\[
\begin{array}{c}
\Delta_2 \\
\downarrow \tau \\
\Delta_1 \end{array}
\begin{array}{c}
\Delta_3 \\
\uparrow T_2 \\
\end{array}
\begin{array}{c}
T_1 \\
\end{array}
\]

If \(\tau \) is not an isomorphism, then we write \(T_1 \prec T_2 \).
Type-Counting Lemma

Given:
- $T_1 : \Delta_1 \rightarrow \Delta_2$, $T_2 : \Delta_3 \rightarrow \Delta_4$, $e : \Delta_3 \rightarrow \Delta_2$,
- a graph Γ.

Lemma

If Γ is T_1- and T_2-regular, and if Γ is T-regular for all $T_1 \oplus_e T_2 \prec T$, then Γ is also $T_1 \oplus_e T_2$-regular.
Definition

Let $\mathbb{T} : \Delta \leftrightarrow \Theta$ be a regularity-type of order (m, n). Suppose $\Delta = (B, D)$, $\Theta = (T, E)$. Let $S \subseteq T$ be the image of \mathbb{T}. Then we define

$$\hat{T} := (T, E \cup (S/2)),$$

Proposition

Let Γ be an (n, m)-regular graph (for $m > n$). Then, Γ is $(n, m + 1)$-regular if and only if it is \mathbb{T}-regular for all graph-types \mathbb{T} of order $(n, m + 1)$ for which \hat{T} is $(n + 1)$-connected.
Definition

An incidence structure is a triple \((\mathcal{P}, \mathcal{L}, \mathcal{I})\) such that

1. \(\mathcal{P}\) is a set of points,
2. \(\mathcal{L}\) is a set of lines,
3. \(\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}\).

Definition

A partial linear space of order \((s, t)\) is an incidence structure \((\mathcal{P}, \mathcal{L}, \mathcal{I})\) such that

1. each line is incident with \(s + 1\) points,
2. each point is incident with \(t + 1\) lines,
3. every pair of points is incident with at most one line.

Definition

The point graph of a partial linear space is the graph that has as vertices the points such that two points form an edge whenever they are collinear.
Partial Linear spaces

Definition

An incidence structure is a triple \((\mathcal{P}, \mathcal{L}, \mathcal{I})\) such that
1. \(\mathcal{P}\) is a set of points,
2. \(\mathcal{L}\) is a set of lines,
3. \(\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}\).

Definition

A partial linear space of order \((s, t)\) is an incidence structure \((\mathcal{P}, \mathcal{L}, \mathcal{I})\) such that
1. each line is incident with \(s + 1\) points,
2. each point is incident with \(t + 1\) lines,
3. every pair of points is incident with at most one line.

Definition

The point graph of a partial linear space is the graph that has as vertices the points such that two points form an edge whenever they are collinear.
Definition (Cameron 1975)

A partial quadrangle of order \((s, t, \mu)\) is a partial linear space of order \((s, t)\) such that

1. if three points are pairwise collinear, then they are on one line,
2. if two points are non-collinear, then exactly \(t\) points are collinear with both.

Remarks

- A strongly regular graph is isomorphic to the point-graph of a PQ if and only if it does not contain a subgraph isomorphic to \(K_4 - e\) (Cameron ’75).
- Thus, the original PQ can be recovered from its point graph, up to isomorphism.
- Without loss of generality, we may identify a partial quadrangle with its point graph.
Generalized quadrangles

Definition

A *generalized quadrangle* of order (s, t) is a partial linear space of order (s, t) such that for every line l and every point P not on l there is a unique point Q on l that is collinear with P.

Remark

Every generalized quadrangle is also a partial quadrangle. Thus we may also identify a generalized quadrangle with its point graph.

Proposition (Higman 1971)

A generalized quadrangle has order (s, s^2) if and only if every triad (i.e. triple of pairwise non-collinear points) has the same number of centers.

In a $GQ(s, s^2)$ every triad has $s + 1$ centers.

Corollary

The point-graph of a $GQ(s, s^2)$ is $(3, 4)$-regular.
Generalized quadrangles

Definition

A **generalized quadrangle** of order \((s, t)\) is a partial linear space of order \((s, t)\) such that for every line \(l\) and every point \(P\) not on \(l\) there is a unique point \(Q\) on \(l\) that is collinear with \(P\).

Remark

Every generalized quadrangle is also a partial quadrangle. Thus we may also identify a generalized quadrangle with its point graph.

Proposition (Higman 1971)

A generalized quadrangle has order \((s, s^2)\) if and only if every triad (i.e. triple of pairwise non-collinear points) has the same number of centers.
In a GQ\((s, s^2)\) every triad has \(s + 1\) centers.

Corollary

The point-graph of a GQ\((s, s^2)\) is \((3, 4)\)-regular.
Step 1. Take a generalized quadrangle (P, L, I) of order (s, s^2).

Step 2. Take some point $V \in P$ and define

$$P_V := \{P \in P \mid P \neq V, \, P, \, V \text{ not collinear}\},$$

$$L_V := \{l \in L \mid V \text{ not on } l\},$$

$$I_V := I \cap (P_V \times L_V).$$

Proposition

The incidence structure (P_V, L_V, I_V) is a partial quadrangle of order $(s - 1, s^2, s^2 - s)$

Remarks

- In fact, every such $PQ(s - 1, s^2, s^2 - s)$ has an extension to a $GQ(s, s^2)$ (Ivanov, Shpektorov 1991).
- Thus, every partial quadrangle of order $(s - 1, s^2, s^2 - s)$ can be obtained this way.
On the (2, 6)-regularity of PQ(s − 1, s^2, s^2 − s)

- Proving (2, 6)-regularity of PQ(s − 1, s^2, s^2 − s) so far made heavily use of the (2, 7)-regularity and the (3, 4)-regularity of the associated GQ(s, s^2).
- A close analysis of the (very technical) proof revealed that in fact for many types T of order (3, 7), it was shown that GQ(s, s^2) is T-regular.

Goal:
Simplify the proof of the (2, 6)-regularity of PQ(s − 1, s^2, s^2 − s) by studying types of order (3, 7) in the associated GQ(s, s^2).
Main result

Question
Which types have to be counted in order to show that a GQ\((s, s^2)\) is \((3, 7)\)-regular?

Answer
Only the types \(T_1 : K_3 \leftrightarrow K_5, \; T_2 : K_3 \leftrightarrow K_6, \; T_3 : K_3 \leftrightarrow K_7\) need to be counted.

Theorem
GQ\((s, s^2)\) is \((3, 7)\)-regular.

Proof.
Needed in the proof:
1. \((3, 4)\)-regularity of GQ\((s, s^2)\),
2. the type-counting lemma,
3. a computer for finding all indecomposable types.
Concluding remarks

Consequences

1. The presented result strengthens Reichard’s theorem on the 7-vertex condition for \(GQ(s, s^2) \).
2. The proof of the presented result drastically simplifies the proof of the 6-vertex condition for \(PQ(s - 1, s^2, s^2 - s) \).

Smallest non-classical \((3, 7) – regular\) example

- The smallest non-classical example is \(GQ(5, 25) \).
- Its point-graph has parameters \((v, k, \lambda, \mu) = (756, 130, 4, 26)\).
- Its automorphism group acts intransitively on the vertices.
Conjecture (Klin 1994?)

There exists a t_0, such that every strongly regular graph that satisfies the t_0-vertex condition is in fact already 2-homogeneous (i.e., is a rank-3-graph).

- if Klin's conjecture is true, then $t_0 \geq 8$ (by Reichard's result).
- Moreover, if a Moore-graph of valency 57 exists, then $t_0 \geq 10$ (Reichard, CP 2014).

Problem

Does there exist a t_0, such that every $(3, t_0)$-regular graph is 3-homogeneous?

If so, then $t_0 \geq 8$.

Problem

Does there exists a t_0, such that every $(4, t_0)$-regular graph is 4-homogeneous?

If so, then $t_0 \geq 6$, as the only known $(4, 5)$-regular graph that is not 4-homogeneous is the McLaughlin-graph (on 275 vertices). It is not $(4, 6)$-regular.