Spectral characterizations of distance-regularity of graphs

Edwin van Dam

Tilburg University, the Netherlands

Modern Trends in Algebraic Graph Theory, Villanova, June 2014
A (finite simple) graph Γ on n vertices

The spectrum (of eigenvalues) $\lambda_1 \geq \ldots \geq \lambda_n$ of the (a) 01-adjacency matrix A of Γ
A (finite simple) graph Γ on n vertices

The spectrum (of eigenvalues) $\lambda_1 \geq \ldots \geq \lambda_n$ of the (a) 01-adjacency matrix A of Γ

EvD & Haemers (2003) ‘would bet’ that almost all graphs are determined by the spectrum.
Distance-regularity: there are c_i, a_i, b_i, $i = 0, 1, \ldots, d$ such that for every pair of vertices u and w at distance i:

- The number of neighbors z of w at distance $i - 1$ from u equals c_i.
- The number of neighbors z of w at distance i from u equals a_i.
- The number of neighbors z of w at distance $i + 1$ from u equals b_i.
Distance-regularity: there are c_i, a_i, b_i, $i = 0, 1, \ldots, d$ such that for every pair of vertices u and w at distance i:

- $\# \text{ neighbors } z \text{ of } w \text{ at distance } i - 1 \text{ from } u$ equals c_i
- $\# \text{ neighbors } z \text{ of } w \text{ at distance } i \text{ from } u$ equals a_i
- $\# \text{ neighbors } z \text{ of } w \text{ at distance } i + 1 \text{ from } u$ equals b_i

Complete graphs, Strongly regular graphs, Cycles,

Hamming graphs, Johnson graphs, Grassmann graphs, Odd graphs
Distance-regularity: there are c_i, a_i, b_i, $i = 0, 1, \ldots, d$ such that for every pair of vertices u and w at distance i:

- $\#$ neighbors z of w at distance $i - 1$ from u equals c_i
- $\#$ neighbors z of w at distance i from u equals a_i
- $\#$ neighbors z of w at distance $i + 1$ from u equals b_i

Complete graphs, Strongly regular graphs, Cycles, Hamming graphs, Johnson graphs, Grassmann graphs, Odd graphs

Fon-Der-Flaass (2002) \Rightarrow Almost all distance-regular graphs are not determined by the spectrum.
Walks

\(A_i \) is the distance-\(i \) adjacency matrix, \(A = A_1 \):

\[
AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}, \quad i = 0, 1, \ldots, d,
\]

\(A_i = p_i(A) \) for a polynomial \(p_i \) of degree \(i \)

Rowlinson (1997): A graph is a DRG iff the number of walks of length \(\ell \) from \(x \) to \(y \) depends only on \(\ell \) and the distance between \(x \) and \(y \)
A_i is the distance-i adjacency matrix, $A = A_1$:

$$AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}, \quad i = 0, 1, \ldots, d,$$

$A_i = p_i(A)$ for a polynomial p_i of degree i

Rowlinson (1997): A graph is a DRG iff the number of walks of length ℓ from x to y depends only on ℓ and the distance between x and y.

Intersection numbers do not determine the graph (in general).

Do the eigenvalues determine distance-regularity?
\[
\sum (A^\ell)_{uu} = \text{tr } A^\ell = \sum \lambda_i^\ell
\]

\[
\sum p(A)_{uu} = \text{tr } p(A) = \sum p(\lambda_i)
\]

for every polynomial \(p \)

All spectral information is in these equations.
The following can be derived from the spectrum:

- number of vertices
- number of edges
- number of triangles
- number of closed walks of length ℓ
- bipartiteness
- regularity
- regularity + connectedness
- regularity + girth
- odd-girth
Distance-regularity is not determined by the spectrum

The (‘almost’ dr) twisted Desargues graph
(Bussemaker & Cvetković 1976, Schwenk 1978)

Note: Desargues is Doubled Petersen
If \(\Gamma \) is distance-regular, diameter \(d \), valency \(k \), girth \(g \), distinct eigenvalues \(k = \theta_0, \theta_1, \ldots, \theta_d \), satisfying one of the following properties, then every graph cospectral with \(\Gamma \) is also distance-regular:

1. \(g \geq 2d - 1 \) (Brouwer & Haemers 1993),
2. \(g \geq 2d - 2 \) and \(\Gamma \) is bipartite (EvD & Haemers 2002),
3. \(g \geq 2d - 2 \) and \(c_{d-1}c_d < -(c_{d-1} + 1)(\theta_1 + \ldots + \theta_d) \) (EvD&Haemers 2002),
4. \(c_1 = \ldots = c_{d-1} = 1 \) (EvD & Haemers 2002),
5. \(a_1 = \ldots = a_{d-1} = 0, \ a_d \neq 0 \) (Huang & Liu 1999).
If Γ is distance-regular, diameter d, valency k, girth g, distinct eigenvalues $k = \theta_0, \theta_1, \ldots, \theta_d$, satisfying one of the following properties, then every graph cospectral with Γ is also distance-regular:

1. $g \geq 2d - 1$ (Brouwer & Haemers 1993),
2. $g \geq 2d - 2$ and Γ is bipartite (EvD & Haemers 2002),
3. $g \geq 2d - 2$ and $c_{d-1}c_d < -(c_{d-1} + 1)(\theta_1 + \ldots + \theta_d)$ (EvD&Haemers 2002),
4. $c_1 = \ldots = c_{d-1} = 1$ (EvD & Haemers 2002),
5. $a_1 = \ldots = a_{d-1} = 0$, $a_d \neq 0$ (Huang & Liu 1999).

Moreover, the following graphs are determined by their spectrum:

1. dodecahedron and icosahedron (Haemers & Spence 1995),
2. coset graph extended ternary Golay code (EvD & Haemers 2002),
3. Ivanov-Ivanov-Faradjev graph (EvD & Haemers & Koolen & Spence 2006),
4. Hamming graph $H(3, q)$, $q \geq 36$ (Bang &EvD & Koolen 2008).
If Γ is distance-regular, diameter d, valency k, girth g, distinct eigenvalues $k = \theta_0, \theta_1, \ldots, \theta_d$, satisfying one of the following properties, then every graph cospectral with Γ is also distance-regular:

1. $g \geq 2d - 1$ \text{(Brouwer & Haemers 1993)},
2. $g \geq 2d - 2$ and Γ is bipartite \text{(EvD & Haemers 2002)},
3. $g \geq 2d - 2$ and $c_{d-1}c_d < -(c_{d-1} + 1)(\theta_1 + \ldots + \theta_d)$ \text{(EvD&Haemers 2002)},
4. $c_1 = \ldots = c_{d-1} = 1$ \text{(EvD & Haemers 2002)},
5. $a_1 = \ldots = a_{d-1} = 0$, $a_d \neq 0$ \text{(Huang & Liu 1999)}.

Moreover, the following graphs are determined by their spectrum:

1. dodecahedron and icosahedron \text{(Haemers & Spence 1995)},
2. coset graph extended ternary Golay code \text{(EvD & Haemers 2002)},
3. Ivanov-Ivanov-Faradjev graph \text{(EvD & Haemers & Koolen & Spence 2006)},
4. Hamming graph $H(3, q)$, $q \geq 36$ \text{(Bang &EvD & Koolen 2008)}.

Note: the Johnson graph $J(n, d)$, $n - 3 \geq d \geq 3$ has cospectral graphs that are not distance-regular \text{(EvD & Haemers & Koolen & Spence 2006)}.
EvD & Koolen & Tanaka, in preparation:

“Distance-regular graphs”
Consider the spectrum of a k-regular graph

Inner product $\langle p, q \rangle = \frac{1}{n} \text{tr}(p(A)q(A)) = \frac{1}{n} \sum_i p(\lambda_i)q(\lambda_i)$

on the space of polynomials mod minimal polynomial
Consider the spectrum of a k-regular graph

Inner product $\langle p, q \rangle = \frac{1}{n} \text{tr}(p(A)q(A)) = \frac{1}{n} \sum_i p(\lambda_i)q(\lambda_i)$

on the space of polynomials mod minimal polynomial

Orthogonal system of **predistance polynomials** p_i of degree i normalized such that $\langle p_i, p_i \rangle = p_i(k) \neq 0$

$x p_i = \beta_{i-1} p_{i-1} + \alpha_i p_i + \gamma_{i+1} p_{i+1}, \quad i = 0, 1, \ldots, d,$

compare to

$A A_i = b_{i-1} A_{i-1} + a_i A_i + c_{i+1} A_{i+1}, \quad i = 0, 1, \ldots, d,$
Spectral Excess

Spectral Excess Theorem (Fiol & Garriga 1997):

\[k_d \leq p_d(k) \] with equality iff the graph is distance-regular
Spectral Excess Theorem (Fiol & Garriga 1997):

\[k_d \leq p_d(k) \text{ with equality iff the graph is distance-regular} \]

Laplacian Spectral Excess Theorem (EvD & Fiol 2014):

it is not necessary to restrict to regular graphs!
Preintersection numbers

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_i</td>
<td>3</td>
<td>2</td>
<td>1.138</td>
<td>0.434</td>
<td>0.587</td>
<td>0.316</td>
<td>0.253</td>
<td>0.559</td>
<td>0.0514</td>
<td>0.643</td>
<td></td>
</tr>
<tr>
<td>α_i</td>
<td>0</td>
<td>0</td>
<td>0.750</td>
<td>-0.257</td>
<td>-0.382</td>
<td>-0.051</td>
<td>-0.849</td>
<td>-0.097</td>
<td>0.082</td>
<td>-0.570</td>
<td>0.287</td>
</tr>
<tr>
<td>γ_i</td>
<td>1</td>
<td>1.111</td>
<td>2.823</td>
<td>2.794</td>
<td>2.632</td>
<td>3.595</td>
<td>2.537</td>
<td>2.865</td>
<td>2.925</td>
<td>2.722</td>
<td></td>
</tr>
</tbody>
</table>
Preintersection numbers

Abiad & EvD & Fiol (2014) A non-bipartite graph has odd-girth $2m + 1$ if and only if $\alpha_0 = \cdots = \alpha_{m-1} = 0$ and $\alpha_m \neq 0$. A graph is bipartite if and only if $\alpha_0 = \cdots = \alpha_d = 0$.

Villanova, June 2, 2014
Generalized Odd graph (drg with $a_1 = \ldots = a_{d-1} = 0, \ a_d \neq 0$)

Odd graphs, folded cubes, ‘almost bipartite’, $\{7, 6, 6; 1, 1, 2\}$
Generalized Odd graph (drg with $a_1 = \ldots = a_{d-1} = 0, a_d \neq 0$)

Odd graphs, folded cubes, ‘almost bipartite’, $\{7, 6, 6; 1, 1, 2\}$

EvD & Haemers (Odd-girth theorem 2011) A regular graph with $d + 1$ distinct eigenvalues and odd-girth $2d + 1$ is a generalized Odd graph

Lee & Weng (2012) extended this for non-regular graphs
Odd-girth

Generalized Odd graph (drg with $a_1 = \ldots = a_{d-1} = 0, a_d \neq 0$)

Odd graphs, folded cubes, ‘almost bipartite’, \{7, 6, 6; 1, 1, 2\}

EvD & Haemers (Odd-girth theorem 2011) A regular graph with $d + 1$ distinct eigenvalues and odd-girth $2d + 1$ is a generalized Odd graph

Lee & Weng (2012) extended this for non-regular graphs

Abiad & EvD & Fiol (2014) Let G be non-bipartite graph with $\alpha_i \geq 0$ for $i = 0, \ldots, d - 1$. Then

$$\gamma_d \geq -(\theta_1 + \ldots + \theta_d),$$

with equality if and only if G is a distance-regular generalized Odd graph.
Abiad & EvD & Fiol (2014):

A regular graph has girth $2m + 1$ if and only if $\alpha_0 = \cdots = \alpha_{m-1} = 0$, $\alpha_m \neq 0$, and $\gamma_1 = \cdots = \gamma_m = 1$.

A regular graph has girth $2m$ if and only if $\alpha_0 = \cdots = \alpha_{m-1} = 0$, $\gamma_1 = \cdots = \gamma_{m-1} = 1$, and $\gamma_m > 1$.
Abiad & EvD & Fiol (2014):

A regular graph has girth $2m + 1$ if and only if $\alpha_0 = \cdots = \alpha_{m-1} = 0$, $\alpha_m \neq 0$, and $\gamma_1 = \cdots = \gamma_m = 1$.

A regular graph has girth $2m$ if and only if $\alpha_0 = \cdots = \alpha_{m-1} = 0$, $\gamma_1 = \cdots = \gamma_{m-1} = 1$, and $\gamma_m > 1$.

Γ is distance-regular if any of the following conditions holds:

1. $g \geq 2d - 1$,
2. $g \geq 2d - 2$ and Γ is bipartite,
3. $g \geq 2d - 2$ and $\gamma_d < -(\theta_1 + \cdots + \theta_d)$,
4. $\gamma_1 = \cdots = \gamma_{d-1} = 1$.
Thanks

Thanks to

Aida Abiad
Sejeong Bang
Cristina Dalfó
Miquel Angel Fiol
Willem Haemers
Jack Koolen
Ted Spence
Hajime Tanaka
Zheng-jiang Xia
Fix a \((2d - 1)\)-set

Partial linear space of \((d - 1)\)-sets (points) vs. \(d\)-sets (lines)

Point graph and line graph are \(J(2d - 1, d - 1) \sim J(2d - 1, d)\)

Incidence graph is Doubled Odd graph
Fix a \((2d - 1)\)-set
Partial linear space of \((d - 1)\)-sets (points) vs. \(d\)-sets (lines)
Point graph and line graph are \(J(2d - 1, d - 1) \sim J(2d - 1, d)\)
Incidence graph is Doubled Odd graph

Fix one element \(h\) in the \((2d - 1)\)-set
Partial linear space of \((d - 1)\)-sets vs. \(d\)-sets \ni h and \((d - 2)\)-sets not \ni h
Point graph \(J(2d - 1, d - 1)\),
Fix a \((2d - 1)\)-set

Partial linear space of \((d - 1)\)-sets (points) vs. \(d\)-sets (lines)

Point graph and line graph are \(J(2d - 1, d - 1) \sim J(2d - 1, d)\)

Incidence graph is Doubled Odd graph

Fix one element \(h\) in the \((2d - 1)\)-set

Partial linear space of \((d - 1)\)-sets vs. \(d\)-sets \(\ni h\) and \((d - 2)\)-sets not \(\ni h\)

Point graph \(J(2d - 1, d - 1)\), line graph is isomorphic to \(J(2d - 1, d)\)
Fix a \((2d - 1)\)-set

Partial linear space of \((d - 1)\)-sets (points) vs. \(d\)-sets (lines)

Point graph and line graph are \(J(2d - 1, d - 1) \sim J(2d - 1, d)\)

Incidence graph is Doubled Odd graph

Fix one element \(h\) in the \((2d - 1)\)-set

Partial linear space of \((d - 1)\)-sets vs. \(d\)-sets \(\ni h\) and \((d - 2)\)-sets not \(\ni h\)

Point graph \(J(2d - 1, d - 1)\), line graph is isomorphic to \(J(2d - 1, d)\)

Incidence graph is cospectral to Doubled Odd, but not distance-regular: twisted Doubled Odd

EvD & Haemers & Koolen & Spence (2006): \(DO(d), d \geq 3\) has one non-distance-regular cospectral graph that has (at least) one of the halved graphs isomorphic to \(J(2d - 1, d - 1)\).
Generalize to Grassmann graphs

Subsets \rightarrow subspaces of a $(2d - 1)$-dimensional space over $GF(q)$
Generalize to Grassmann graphs

Subsets \rightarrow subspaces of a $(2d - 1)$-dimensional space over $GF(q)$

Point graph Grassmann $J_q(2d - 1, d - 1)$

Incidence graph is cospectral to doubled Grassmann, but not distance-regular: twisted Doubled Grassmann
Generalize to Grassmann graphs

Subsets \rightarrow subspaces of a $(2d - 1)$-dimensional space over $GF(q)$

Point graph Grassmann $J_q(2d - 1, d - 1)$

Incidence graph is cospectral to doubled Grassmann, but not distance-regular: twisted Doubled Grassmann

Line graph is cospectral to $J_q(2d - 1, d - 1)$, but isomorphism doesn’t seem to generalize!
Generalize to Grassmann graphs

Subsets \rightarrow subspaces of a $(2d - 1)$-dimensional space over $GF(q)$

Point graph Grassmann $J_q(2d - 1, d - 1)$

Incidence graph is cospectral to doubled Grassmann, but not distance-regular: twisted Doubled Grassmann

Line graph is cospectral to $J_q(2d - 1, d - 1)$, but isomorphism doesn’t seem to generalize!

Spectral excess theorem: line graph is distance-regular!

....but it is UGLY!!! (the twisted Grassmann graph)
Families of ‘ugly’ distance-regular graphs with unbounded diameter:

Doob, Hemmeter, Ustimenko: not distance-transitive.

twisted Grassmann (EvD & Koolen 2005): not even vertex-transitive.
Families of ‘ugly’ distance-regular graphs with unbounded diameter:

Doob, Hemmeter, Ustimenko: not distance-transitive.

Twisted Grassmann (EvD & Koolen 2005): not even vertex-transitive.

Note: the Grassmann graph $J_q(n, d), n - 3 \geq d \geq 3, q$ a prime power has cospectral graphs that are not distance-regular (EvD & Haemers & Koolen & Spence 2006).
Dalfó & EvD & Fiol (2011): Ugly (almost) distance-regular graphs can be used to construct cospectral graphs through perturbations:

Adding and removing vertices, edges, amalgamating vertices, etc.
Dalfó & EvD & Fiol (2011): Ugly (almost) distance-regular graphs can be used to construct cospectral graphs through perturbations:

Adding and removing vertices, edges, amalgamating vertices, etc.

Removing vertices from the twisted **Desargues** graph

“It is easy to construct cospectral graphs from ugly d-r graphs”
EvD & Koolen & Xia (2014): “It is easy to construct cospectral graphs from BEAUTIFUL (distance-regular) Taylor graphs”